12-16 May 2025 São Paulo (Brazil)
Deep Learning for Super-Resolution in ICON-O
Fabricio Rodrigues Lapolli  1@  , Maximillian Witte  2, *@  , Peter Korn  3  , Daniel Ruprecht  4  , Phillip Freese  4  , Christopher Kadow  2  
1 : Max-Planck-Institut für Meteorologie
2 : Deutsches Klimarechenzentrum [Hamburg]
3 : Max Planck Institute for Meteorology
4 : Hamburg University of Technology
* : Corresponding author

Machine learning algorithms driven by data offer a promising approach to enhancing the effective resolution of numerical circulation models. In this work, we incorporate a U-Net-type neural network into the ICON-O general circulation model developed by the Max Planck Institute for Meteorology. The network is trained using high-resolution data from ICON-O simulations. Through numerical experiments of varying complexity, our analysis highlights the potential of the ML-enhanced ICON-O model to improve low-resolution simulations in a physically meaningful way while maintaining a reasonable computational cost.


Loading... Loading...